Features

- Mechanically and spectrally matched to the infrared emitting LED lamp.
- RoHS compliant.

Description

Made with NPN silicon phototransistor chips.

Package Dimensions

Notes:
1. All dimensions are in millimeters (inches).
2. Tolerance is ±0.25(0.01”) unless otherwise noted.
3. Lead spacing is measured where the leads emerge from the package.
4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.
Electrical / Optical Characteristics at TA=25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BR CEO}</td>
<td>Collector-to-Emitter Breakdown Voltage</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
<td>IC=100μA, Ee=0mW/c m²</td>
</tr>
<tr>
<td>V_{BR ECO}</td>
<td>Emitter-to-Collector Breakdown Voltage</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
<td>IE=100μA, Ee=0mW/c m²</td>
</tr>
<tr>
<td>V_{CE (SAT)}</td>
<td>Collector-to-Emitter Saturation Voltage</td>
<td></td>
<td>0.8</td>
<td></td>
<td>V</td>
<td>IC=2mA, Ee=20mW/c m²</td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>Collector Dark Current</td>
<td></td>
<td>100</td>
<td></td>
<td>nA</td>
<td>V_{CE}=10V, Ee=0mW/c m²</td>
</tr>
<tr>
<td>TR</td>
<td>Rise Time (10% to 90%)</td>
<td></td>
<td>15</td>
<td></td>
<td>us</td>
<td>V_{CE}=5V, IC=1mA, RL=1000Ω</td>
</tr>
<tr>
<td>TF</td>
<td>Fall Time (90% to 10%)</td>
<td></td>
<td>15</td>
<td></td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>I_{(ON)}</td>
<td>On State Collector Current</td>
<td>0.7</td>
<td>3</td>
<td></td>
<td>mA</td>
<td>V_{CE}=5V, Ee=1mW/c m², λ=940nm</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings at TA=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max. Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-to-Emitter Voltage</td>
<td>30V</td>
</tr>
<tr>
<td>Emitter-to-Collector Voltage</td>
<td>5V</td>
</tr>
<tr>
<td>Power Dissipation at (or below) 25°C Free Air Temperature</td>
<td>100mW</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C To +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C To +85°C</td>
</tr>
<tr>
<td>Lead Soldering Temperature (>5mm for 5sec)</td>
<td>260°C</td>
</tr>
</tbody>
</table>
PRECAUTIONS

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead-forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1)

 ![Diagram of correct and incorrect mounting methods](image)

 Fig.1

 "○" Correct mounting method "×" Incorrect mounting method

2. When soldering wire to the LED, use individual heat-shrink tubing to insulate the exposed leads to prevent accidental contact short-circuit. (Fig.2)

3. Use stand-offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB.

 ![Diagram of LED with heat shrink insulation and stand-off](image)

 Fig. 2
 ![Diagram of LED with stand-off and spacer](image)

 Fig. 3
 Fig. 4

4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)

5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)
6. Do not bend the leads more than twice. (Fig. 8)

7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering.

8. The tip of the soldering iron should never touch the lens epoxy.

9. Through-hole LEDs are incompatible with reflow soldering.

10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility.

11. Recommended Wave Soldering Profiles:

![Graph showing recommended wave soldering profiles](image)

Notes:
1. Recommend pre-heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C.
2. Peak wave soldering temperature between 245°C ~ 255°C for 3 sec (5 sec max).
3. Do not apply stress to the epoxy resin while the temperature is above 85°C.
4. Fixtures should not linear stress on the component when mounting and during soldering process.
5. SAC 305 solder alloy is recommended.
6. No more than one wave soldering pass.