
 1

...J2R Scientific...

http://www.J2RScientific.com

55 Stillpass Way
Monroe, OH

 45050

How to Build a J2
by, Justin R. Ratliff

Date: 12/22/2005

(513) 759-4349

Weyoun7@aol.com

The J2 robot (Figure 1.) from J2R Scientific is a
compete robot ready to run out of the box. Its
design is part of the REOP (Robotics Education and
Out Reach program of The Robotics Club of Yahoo
or www.trcy.org

The J2 has been a fun project. My original idea was
to create a security robot after the 9-11 attacks.
After dedicated thought into all aspects of what a
security robot would require, I decided it was better
to start small so I could more easily model the
behaviors and systems I would need for a security
robot. This led me to create the J2 robot, which
does bare a passing resemblance to a somewhat
famous movie robot of the mid 80’s.

 Figure 1.

The J2 allowed me to experiment with Subsumption programming and the new
PING sonar range modules from Parallax, inc.

In the creation process of J2 I decided I really needed to focus on what I wanted
from my robot and what I thought other people would want to see. I decided my
robot needed to look interesting; be easy to add components to; easy to remove
components from; and be easy to use.

With these guidelines in mind I chose the Basic Stamp II as the micro-controller. I
decided on a standard sensor compliment of Sonar for navigation, IR for close up or
edge detection, CdS photo cell for light level and a multi-input port for multiple switch
inputs from either a keypad or several bump sensors. I decided on two continuation
rotation servos for drive motors and a servo controlled neck for the sonar to look up
and down. The J2 did not need to turn the sonar side to side (I’ll explain why). I
wanted a speaker for tone generation, to give J2 a voice.

I also wanted to experiment with the new Text-to-Speech Emimic board from
Parallax, inc. And have the ability to add more subsystems and components easily.

 2

Once I knew what I needed to focus on I could design the board. Figure 2 shows
the J2 schematic and figure 3 shows the PCB artwork as laid out using free
software from www.expresspcb.com Prices for boards are very reasonable. One
note of caution, double check the hole spacing and size before you place an order.
With all the options it’s easy to choose a wrong size or settings. It’s a great program
and service and I highly recommend them for anyone.

Figure 2.

 3

Figure 3.

Below is the listing for the standard i/o assignments on the J2:

Neck = i/o 2
Right Servo = i/o 1
Left Servo = i/o 3
GP2D12 IR = i/o 6
PING Sonar = i/o 7
Speaker = i/o 8
Text-to-Speech (if installed) = i/o 8 and 9
LED Mouth Option = i/o 10
CdS Option = i/o 14
Multi Input Option = i/o 15

Parts List:

Qty: Parts: Source:
 1 Basic Stamp II Parallax.com
 2 Continuous Rotation Servos Parallax.com
 1 Standard Servo Parallax.com
 1 Emimic Text -to-Speech Module Parallax.com
 1 PING Sonar Module Parallax.com
 1 J2 PCB J2R Scientific
 1 J2 Body J2R Scientific
 1 9pin DSUB female connector Digikey.com

 4

 1 24pin DIP Socket Jameco.com
 1 8pin SIP Socket Jameco.com
 2 Servo Wheels Acroname.com
 1 Sharp GP2D12 IR Module Acroname.com
 1 6 AA Battery Pack
 1 CdS Photo Cell
 1 Power Switch
 1 5V Regulator
 1 Caster Wheels
 Misc: wire ties, double sided tape, wire, heat shrink tubing, misc. connectors

The production J2 is built from stainless steel. The prototype body was built from
Plexiglas. I cut the Plexiglas to size and heated it with a heat gun to bend it into shape.
For a beginner I believe Plexiglas is cheaper, easier to work with and more forgiving
than metal. It’s also very light weight and fairly strong. Figure 4 shows the prototype
plastic J2 layout with larger foam wheels.

 Figure 4.

A heat gun is sort of like an industrial hair dryer and you can pick one up at your local
hardware store for around $30. When heating plastic to bend it you want to heat the
surface of the plastic where you’ll place a bend and apply heat evenly. The plastic will
need to get fairly hot, but if you see the surface structure start to change texture you
know you’ve applied too much heat! With clear Plexiglas you’ll see the surface start to
granulize if it gets too hot.

 5

If you choose to paint the Plexiglas I recommend you use a plastic primer spray paint
from your hardware store to cover the Plexiglas before you apply your final paint color.
A final layer of clear coat will add protection to your robot’s paint and body.

With the J2 programs based on Subsumption behavioral subroutines it makes it easy to
add new behaviors and adds at times at least the appearance of intelligence. To
program the J2 you’ll need to download the Basic Stamp editor either the DOS or
Window’s version from www.parallax.com. Below is the J2SubSumExplore program.
You can download the latest J2 code from www.j2rscientific.com See Figure 6 for the
standard J2 Explore program.

Lesson Learned: It is always better to start small. Master all that you can, seek
perfection from every part of your small robot before you move onto larger projects.
Always apply the “keep it simple” approach to your design. Lay out your robot designs
on paper with as much detail as possible in the hardware and programmed actions of
the robot. Imagine your robot going through the actions of your program with the
hardware you have drawn out. Many mistakes and limitations can be discovered before
you begin building your robot if you invest the time to think through your design.

For instance, the J2 does not have a servo to turn the sonar side to side but it can look
up and down, why is that? On such a robot (in my opinion) it would be wasteful to
include a servo to rotate the head side to side when the robot can turn its wheels to look
side to side. Also if the robot sees something of interest to the side, it will already be
ready to drive toward what it sees. If a servo rotated the neck to the side, the robot
would need to turn its body to match what the head saw.

This one detail of removing one servo from the head saves on power consumption,
code space, and weight and makes the robot more efficient.

Figure 6. Robot Code

' {$STAMP BS2}
'J2SubSumExplore.BS2
'J2R Scientific
'12-12-2005
'J2 will explore about the world using subsumption based
'behavioral based intelligence.

'Generic values
tmp VAR Word ' tmp var, many routines
ltmp VAR tmp.BYTE0
htmp VAR tmp.BYTE1
seed VAR Word 'random number seed
val05 VAR Byte
time VAR Word
i VAR Byte 'loop counter

 6

a VAR Byte
PING CON 7 'PING sonar port
LEFT CON 3 'left wheel port
RIGHT CON 1 'right wheel port
NECK CON 2 'neck servo port
SPKR CON 8 'speaker port
LED CON 10 'LED mouth, this is not standard on all J2's

'These are for the servo routines
SACT CON 5 'times through act routine
drive VAR Word 'wheel command combo
ldrive VAR drive.BYTE1 'left wheel command
rdrive VAR drive.BYTE0 'right wheel command
aDur VAR Nib 'duration of pulsout

'normal list follows
rv CON $6432 'forward
fd CON $3264 'reverse
st CON $4d4d 'stop
tr CON $324d 'turn right
tl CON $4d64 'turn left
rl CON $6464 'rotate right
rr CON $3232 'rotate left
bl CON $644d 'backup turning left

'wander values
wDir VAR Word 'wander value
wDur VAR Byte 'wander duration

'avoid states and vars
avDir VAR Word 'direction
avDur VAR Nib 'duration

'bumper vars and constants
bumper VAR IN6 'bumper io pin
bstate VAR Nib 'bumper FSM state
bDir VAR Word 'bumper direction holder
bDur VAR Byte 'duration in that direction

'set up for running
wDur = 0 'clear wander duration
aDur = 0 'clear act loop counter
bDur = 1 'clear bumper duration, may need to change back to 0
bstate = 0
drive = st 'stop servo motors - not really needed
LOW LED

main: 'subsumption architecture
 GOSUB wander 'random wander instinct is lowest priority
 GOSUB avoid 'avoid running into stuff

 7

 GOSUB bumpck 'don't stay bumped into it = highest priority
 GOSUB act 'acts on highest priority movement needed
 ' i.e. last to set direction
 GOTO main

wander: 'randomly wander around
 IF wDur > 0 THEN wDone1
 RANDOM seed 'random direction
 i = seed & %111 'mask off for 0-7 only
 LOOKUP i,[fd,tl,fd,fd,fd,fd,tr,fd],wDir 'chose direction
 seed = seed + i
 wDur = (seed & %111111) + 20 'mask for 64 choices of duration
wDone1:
 wDur = wDur - 1 'decrement wander counter
 drive = wDir 'get direction
 PULSOUT NECK, 900
 LOW LED
 RETURN 'completed

act: 'moves servo motors
 IF aDur > 0 THEN aDec 'already doing one, got here
 aDur = SACT '# of main loops between pulseouts +1
 PULSOUT LEFT,ldrive * 10
 PULSOUT RIGHT,rdrive * 10
aDec: aDur = aDur - 1 'decrement act loop cntr
 RETURN

avoid:
 PULSOUT 7, 5
 PULSIN 7, 1, time
 time = time ** 2251
 IF time > 0062 THEN avdone

 avfront:
 HIGH LED
 avDir = rl 'rotate away
 avDur = 15
 drive = rl
 GOTO avdone

avdone:
RETURN

bumpck:
 IF bumper = 0 THEN bmpnow
 IF bDur > 0 THEN bmpact

 8

 BRANCH bstate,[bDone1,bbup]

breset: 'end state 2, now reset
 bstate = 0 'state machine to idle
 RETURN

bbup: 'end state 1, now
 bDir = rl 'rotate left away
 bDur = 65 'sets time limit
 bstate = 2 'next state
 GOTO bdrive

bmpnow: 'being bumped now
 bDir = rv 'set backup while bumped and
 bDur = 61 'for a while (+1) after not being bumped
 bstate = 1 'start state machine

bmpact: 'bump mode active
 bDur = bDur - 1 'decrement bump timer

bdrive:
 drive = bDir 'set drive direction to bump

bDone1: 'no bump
 RETURN

END

